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The investigation of teachers’ knowledge that informs practice in the mathematics 
classroom is an important area for research. This issue is addressed in our larger research 
program which is aimed at characterising the complexity and multi-dimensionality of this 
knowledge. A report on an earlier phase of this program (Butterfield & Chinnappan, 2010) 
showed that pre-service teachers tended to activate more common content knowledge than 
content that is required for teaching. We build on this previous work by examining the 
kinds of knowledge that a cohort of pre-service teachers activated in the context of 
designing a learning task.  

Introduction 
Current reforms and debate about improving the quality of mathematical learning are 
increasingly concerned with the kind of learning experiences teachers can provide for 
the learners (Australian Curriculum, Assessment and Reporting Authority [ACARA], 
2010). The quality of these learning experiences in turn depends on teachers’ own 
knowledge and experiences (Ball, Hill & Bass, 2005). There has been a surge of interest 
in examining teacher knowledge that drives their actions in the classroom. This study is 
located within this increasing concern with knowledge that is necessary for the support 
of deep mathematical understanding. 

Context for the study 
The performance of teachers has come under increased focus as reflected by 
accreditation requirements of professional bodies. In order to be accredited by 
professional bodies such as the NSW Institute of Teachers (NSWIT) and the 
Queensland College of Teachers (QCT) prospective teachers need to demonstrate that 
they have achieved a set of minimum knowledge and skills. This development has 
brought a high degree of urgency among tertiary educators to ensure that their programs 
and teaching modules are aligned with standards identified by such professional bodies. 
All these clusters of standards have one thing in common, which is that teachers must 
develop strong content and pedagogical knowledge. This is the focus of the study. 
 While the Australian National Curriculum is in various states of implementation a 
common teaching requirement is the consideration of performance against national 
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standards (ACARA, 2010). This development again has brought the microscope on 
teaching and teaching knowledge. 
 Ball, Hill, and Bass (2005) have identified four dimensions of knowledge that are 
important for teachers to function effectively in a classroom: Common Content 
Knowledge; Specialised Content Knowledge; Knowledge of Content and Students; and 
Knowledge of Content and Teaching. These dimensions provide direction for the 
assessment of teacher knowledge for teaching. The elucidation of this knowledge is 
somewhat complicated due to the fact that this knowledge is internal. In order to gain 
insight into this knowledge, it is necessary to externalise the knowledge by providing a 
range of contexts to elicit this knowledge. It would seem that the richer the context in 
which the teachers are embedded, the better the quality of teacher knowledge that can 
be accessed. This logic led us to design a research study in which a cohort of pre-service 
teachers was asked to develop a complex problem that can be used in Upper Primary 
classrooms. 
 Our long term aim is to map the growth of this knowledge during the Graduate 
Diploma of Education (GDE) program. This study is a follow up of a previous study 
(Butterfield & Chinnappan, 2010) that was set against the above background concerning 
teacher knowledge that informs teaching. The results of this study showed that our GDE 
Pre-Service Teachers (PSTs) tended to access a higher proportion of Common Content 
Knowledge (CCK) than components of teacher knowledge that are more relevant to 
their work in the class. Specifically, we found that their knowledge of Specialised 
Content Knowledge (SCK), Knowledge of Content and Students (KCS) and Knowledge 
of Content and Teaching (KCT) were weak. This is not unexpected, as the participants 
were commencing their studies. 
 This study is aimed at boosting and assessing the growth of PSTs’ knowledge of 
SCK, KCS and KCT. As described below our lectures and tutorials were modified in 
order to bring about changes in the above knowledge. This strategy involved guiding 
the PSTs to construct learning activities that were investigative in nature. 

Related literature 
Teacher knowledge 
Research (Shulman, 1987) on teacher knowledge has spawned a number of studies 
concerning teacher knowledge and practice (Ma, 1999; Schoenfeld, 2010). In the past 
decade these studies have attempted to capture the complexity of teacher knowledge 
under various conditions including that which is played out in the classroom. This body 
of research has led to a convergence of view that such knowledge is complex and 
multifaceted. For example, the studies conducted by Ma (1999) showed that teachers 
need to transform their content knowledge to teach effectively. Concurrent 
developments in the United States have generated new directions in the way we could 
conceptualise and study teacher knowledge. Research in the United States has been led 
by Ball and her associates, which resulted in the development of more refined 
dimensions of teacher knowledge (Figure 1). The spirit of this research theme has been 
embraced by others by examining teacher knowledge in a variety of contexts 
(Mewborn, 2001). 
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Teaching as problem solving 
A major problem for teachers is to design and implement effective learning experiences 
leading to sound learning outcomes. The problem, defined in this manner, is rather 
nebulous as there are multiple paths to the solution. If one conceives teaching as a 
problem solving activity one is open to a range of opportunities for teachers to exhibit 
and exploit their knowledge. Problem-solving activities involve searching for a solution 
within a problem space (Newell & Simon, 1972). The nature of problem space and 
quality of search is a function of the elements in the space. A corollary of this action is 
that in an open-ended problem such as teaching, the problem space can be expected to 
be populated by not only more elements but also the search will be supported by the 
activation of multiple knowledge sources. Thus, it would seem that the kind of 
knowledge identified by Ball et al. (2005) are better studied in the context of teachers 
designing problem-solving activities that can be subsequently used to engage learners. 
In the present study we adopt this approach. 

Conceptual framework 
Data analysis and interpretations were guided by the following schematic representation 
of teacher knowledge for teaching mathematics (MKT) (Figure 1) (Hill, Ball & 
Schilling, 2008, p. 174).  

 

Figure 1. Schematic representation of teacher knowledge for teaching mathematics (MKT).  

 Four dimensions are defined: 
• Common Content Knowledge (CCK): Mathematical knowledge and skill 

possessed by a well educated adult. 
• Specialised Content Knowledge (SCK): Knowledge of how to: use alternatives to 

solve a problem; articulate mathematical explanations; demonstrate 
representations. 

• Knowledge of Content and Students (KCS): Knowledge that combines knowing 
about mathematics and knowing about students. Knowledge of how to: anticipate 
what students are likely to think; relate mathematical ideas to developmentally 
appropriate language used by children. 
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• Knowledge of Content and Teaching (KCT): Knowledge that combines knowing 
about mathematics and knowing about teaching. Knowledge of how to: sequence 
content for instruction; determine instructional advantages of different 
representations; pause for clarification and when to ask questions; analyse errors; 
observe and listen to a child’s responses; prompt, pose questions and probe with 
questions; select appropriate tasks. 

Focus questions 
The aim of the study was to examine the quality of SCK, KCS and KCT that was 
activated by a cohort of Pre-service Teachers (PSTs) in the course of designing a 
problem.  
 The above aim is reflected in the research questions, seeking  
1. evidence of PSTs activating SCK in the context of designing a problem; 
2. evidence of PSTs activating KCS in the context of designing a problem; 
3. evidence of PSTs activating KCT in the context of designing a problem; and 
4. a correlation between the quality of the problem representation and activation of 

SCK, KCS and KCT. 

Methodology 
Participants 
A cohort of 26 Graduate Diploma of Education students in the final semester of their 
one-year degree participated in the study. The cohort had completed a numeracy course 
prior to this mathematics subject, and had also completed professional experience in 
schools. 
Task 
Pre-service teachers were required to work in pairs to design a mathematical problem 
suitable for Upper Primary school children. In designing the task the PSTs were 
instructed to develop a problem that is isomorphic to the Truss Bridge Problem 
(Butterfield & Chinnappan, 2010).  

Procedures  
PSTs were provided with a range of prompts and supports in both the lectures and 
tutorials before they designed their own problem. The Truss Bridge Problem (TBP) 
(Butterfield & Chinnappan, 2010) was utilised in a number of tutorials and lectures. 
This involved discussions about the different problem representations of TBP and how 
such representations could permit or hinder transfer to other problems by learner. The 
TBP also highlighted the role and the development of a child’s knowledge and skills in 
Number, Patterns and Algebra, and Space. In addition, we examined the use of 
appropriate materials and methods (including technology) to solve problems of this type 
and likely difficulties children could encounter. The TBP, therefore, provided PSTs 
with a stimulus for hands on activities and reflection on the knowledge components 
required in subject matter and pedagogy. The PSTs were also given multiple 
opportunities to explore and solve the TBP. Thus in designing their own new problems 
we are comfortable in assuming that the PSTs are cognisant of the multiple solution 
paths and associated representations of the problems.  
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Representations of TBP and Coding 
The TBP (Figure 2) that was developed in the previous study (Butterfield & 
Chinnappan, 2010) has a certain structure reflecting a hierarchy in the way that it can be 
represented. The hierarchy is as follows:  
1. Concrete – uses concrete materials or physical means to provide a solution  
2. Sequential – uses a table to provide a sequential, linear set of solutions  
3. Generalisation – describes the pattern that can be used to provide a solution to any 

given number 
4. Transferability – describes how the pattern can be used to solve similar problems  

 

Figure 2. Truss bridge problem. 

The hierarchical structure in the Truss Bridge Problem guided us in developing 
instructions for problems with similar structures. This structure also provided a coding 
scheme to rate the quality of task developed by the students.  

Sources of data 
There are two sources of data for the study. The first source involved examining the 
quality of the problem designed by the students. The coding system is based on the 
hierarchy of the TBP. 
 The second source of data involved determining instances of activation of three 
categories of knowledge (SCK, KCS, KCT). In order to generate this data we analysed 
PSTs’ reflective reports, digital presentations and their responses to questions about the 
likely difficulties and useful ways to develop children’s understanding. The researchers 
independently coded these instances in order to establish inter-coder agreement. 

Results 
Participants provided a range of problems that could foster algebraic thinking. The 
problems designed by student pairs are outlined in Table 1. All problems lend 
themselves to an analysis of problem representations along the dimensions of TBP. 
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Table 1. Description of problems. 

Problem Description 
Tricky Trapezium Tables Number of children seated at a row of trapezium-shaped tables 
Multistorey Car Park Number of beams to construct the front of a multistorey car park 
Stair Number of rail posts for a flight of stairs 
Stadium Number of seats in a stadium 
Pig Pen Number of fence panels in a row of pig pens with shared walls 
Jack – In – The - Box Number of exposed body parts with each wind 
Dragon Number of triangular scales per each body part 
Terrace Houses Number of windows in a row of terrace houses 
Fence Posts Number of fence posts in a rectangular paddock 
Path Pavers Number of pavers in patterned path 
Angle Sums The sum of angles in regular shapes 
Hay Stack Number of cylindrical bales in hay stacks 
Mosaic Frame Number of tiles in a frame with coloured corners 

 

Hierarchy of representations for selected problems 
Problem Sample 1 

An example of a problem coded 2 for problem representation is the Pig Pen problem 
(see Figure 3). In this problem PSTs did not identify the potential to generalise the 
pattern to any number of fence panels. 
 

 
How many fence panels are needed to construct these pig pens? 

Figure 3. Pig pen problem. 

The PSTs stated that the children should complete the provided table (see Table 2) and 
that as teachers they would like their students to communicate, “I saw that the numbers 
on the bottom line are going up by three”. Here the PSTs were able to identify only the 
sequential patterns. 

Table 2. Pig pen problem worksheet sample. 

No of pens 1 2 3 4 5 
No of panels 4 7 10   

Problem sample 2 

An example of a problem coded 4 for problem representation is the Tricky Trapezium 
Tables (see Figure 4). The problem enables students to generalise and transfer that 
pattern to a new problem context. The PSTs stated that “generalisations enable students 
to recognise that similar problems have a common algebraic basis”. To support this 
statement the PSTs wrote that: 
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when a child sees the Truss Bridge Problem (see Figure 2) they would say this could be 
solved by two times the number of triangles plus one, which is the same way to solve the 
number of people sitting at different shaped tables. For example, the number of people 
seated around trapezium-shaped table could be determined by counting the number of 
trapeziums multiplied by three plus two (Number of people = 3n +2). This reasoning can 
be applied to squares. 

This type of thinking that resulted in generalisation has been argued to lie at the 
foundation of algebraic thinking (Bobis, Mulligan, Lowrie, & Taplin, 2004). 
 

 

Figure 4. Tricky trapezium tables problem. 

In order to generate data that are relevant to research questions 1-3, we analysed the 
frequency of instances. The mean and standard deviations of this analysis for the four 
problem representations are given in Table 3. 

Table 3. Problem representation and teacher knowledge. 

Problem Representation SCK KCS KCT 

Mean 12.80 7.80 .60 1 

Std. Deviation 6.22 4.02 .54 

Mean 14.50 10.50 1.50 2 

Std. Deviation 2.12 .70 2.12 

Mean 18.00 17.50 2.50 3 

Std. Deviation 11.31 9.19 2.12 

Mean 31.75 25.50 5.00 4 

Std. Deviation 2.75 4.04 1.41 

Mean 19.69 15.15 2.39 Total 

Std. Deviation 9.95 8.90 2.25 

 
We note the accessing of a higher proportion of SCK followed by KCS and KCT. This 
pattern is also evident within each representation. There is a significant difference 
between the number of instances of KCT and the other two categories of knowledge 
across all four categories of problem representations. 
 Table 4 shows results of correlation analysis among the four variables. While all 
three knowledge components are highly positively correlated with Problem 
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Representations, we note KCS and KCT have higher indices. Thus, there was support 
for our contention that a qualitatively superior problem representation will involve a 
higher degree of activation of SCK, KCS and KCT (Research question 4). 

Table 4. Correlation analysis. 

 SCK KCS KCT 
Problem Representation 0.81** 0.88** 0.84** 

** Correlation is significant at the 0.01 level (2-tailed). 

Discussion and implications 
The previous study showed that student teachers both individually and as a group 
tended to activate more CCK component of their subject-matter knowledge of 
mathematics than SCK. The results were consistent with our expectation that as 
beginning teachers their content knowledge of mathematics, robust though this might 
be, would not be translated into forms that were more akin to teaching mathematics to 
children.  
 The thrust of this study was to map developments in PSTs’ teacher knowledge as a 
consequence of exposing them to a teaching approach that focused on the design of 
problems. These teachers had also completed two sessions of their professional 
experience in the school setting. Thus, our expectation was that the classroom 
experiences and our guidance in designing problems for deep mathematical learning 
would assist them to reveal a higher incidence of activation of not only SCK but also 
understanding of student learning and the demands of teaching via an enhanced body of 
KCS and KCT.  
 The results do support our contention that having PSTs design rich learning activities 
would increase their knowledge and activation of SCK, KCS and KCT. Designing 
problems that will be used to support children’s learning requires a level of 
sophistication in teachers’ conceptualisation of the problem environment as shown by 
the range of problems in Table 1. The corollary here is that teachers have to understand 
the mathematics that underpins that activity and insights into how children will grasp 
the problem. We contend that the complexity of the problems teachers have been asked 
to design have provided multiple points at which teachers could connect with and 
activate knowledge relevant to the three categories of knowledge. 
 While all three knowledge categories were positively correlated with the quality of 
problem representation, the highest correlation was evidenced with KCS which 
involved teachers understanding learners. It would seem that problem posing activities 
could be used to enhance the development of KCS, a point that was alluded to by 
Chinnappan and Lawson (2005). 
 Results indicated that (Table 3), a significant number of the participants tended to 
design problems that from a representational viewpoint were somewhat weak. This 
group either constructed the physical model of the problem or merely provided a table 
with numbers indicative of growing dimensions. For example, in Figure 4, student 
teachers could indicate the growth in number of panels per pen for a small number of 
pens (1-5). That is, the only pattern they could identify is numbers increasing in threes 
without being able to extract the general pattern that shows the relations between pens 
and panels. This limitation in the quality of representation, we argue, is the consequence 
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of over reliance on the accessing of procedural knowledge. This outcome is consistent 
with that reported by Capraro, Capraro, Parker, Kulm, and Raulerson (2005). 
 A limitation of the present study is that we did not give prominence to KCT as we 
assume that this is more accessible in real-life teaching contexts. Future studies should 
focus on this issue. Also, we acknowledge that it is difficult to generate a complete 
picture of pre-service teachers’ pedagogical content knowledge within the confines of 
one assessment task that was completed for a university subject. Further studies with a 
greater variety of such tasks might provide more opportunities to examine this 
knowledge. 
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